The Smash Product of Symmetric Functions
نویسنده
چکیده
We construct a new operation among representations of the symmetric group that interpolates between the classical internal and external products, which are defined in terms of tensor product and induction of representations. Following Malvenuto and Reutenauer, we pass from symmetric functions to non-commutative symmetric functions and from there to the algebra of permutations in order to relate the internal and external products to the composition and convolution of linear endomorphisms of the tensor algebra. The new product we construct corresponds to the smash product of endomorphisms of the tensor algebra. For symmetric functions, the smash product is given by a construction which combines induction and restriction of representations. For non-commutative symmetric functions, the structure constants of the smash product are given by an explicit combinatorial rule which extends a well-known result of Garsia, Remmel, Reutenauer, and Solomon for the descent algebra. We describe the dual operation among quasi-symmetric functions in terms of alphabets. Résumé. Nous construisons une nouvelle opération parmi les représentations du groupe symétrique qui interpole entre les produits interne et externe. Ces derniers sont définis en termes du produit tensoriel et de l’induction des représentations. D’après Malvenuto et Reutenauer, nous passons des fonctions symétriques aux fonctions symétriques non commutatives et à l’algèbre des permutations afin de rapporter les produits internes et externes à la composition et à la convolution d’endomorphismes linéaires de l’algèbre tensorielle. Le nouveau produit correspond au produit smash d’endomorphismes de l’algèbre tensorielle. Pour les fonctions symétriques, le produit smash est donné par une construction qui combine l’induction et la restriction de représentations. Pour les fonctions symétriques non commutatives, les constantes de structure du produit smash sont données par une règle combinatoire explicite qui prolonge un résultat bien connu de Garsia, Remmel, Reutenauer et Solomon pour l’algèbre de descentes. Nous décrivons l’opération duale au niveau des fonctions quasi-symétriques en termes d’alphabets. Date: November 21, 2004. 2000 Mathematics Subject Classification. Primary: 05E05, 16W30, 20C30; Secondary: 05E10, 16G99, 16W50.
منابع مشابه
Generalized matrix functions, determinant and permanent
In this paper, using permutation matrices or symmetric matrices, necessary and sufficient conditions are given for a generalized matrix function to be the determinant or the permanent. We prove that a generalized matrix function is the determinant or the permanent if and only if it preserves the product of symmetric permutation matrices. Also we show that a generalized matrix function is the de...
متن کاملSome Properties of Certain Subclasses of Close-to-Convex and Quasi-convex Functions with Respect to 2k-Symmetric Conjugate Points
متن کامل
Symmetric Spectra
Introduction 150 Organization 152 Acknowledgments 152 1. Symmetric spectra 153 1.1. Simplicial sets 153 1.2. Symmetric spectra 154 1.3. Simplicial structure on Sp 156 1.4. Symmetric Ω-spectra 158 2. The smash product of symmetric spectra 159 2.1. Symmetric sequences 159 2.2. Symmetric spectra 162 2.3. The ordinary category of spectra 165 3. Stable homotopy theory of symmetric spectra 165 3.1. S...
متن کاملSmash Products for Secondary Homotopy Groups
We construct a smash product operation on secondary homotopy groups yielding the structure of a lax symmetric monoidal functor. Applications on cup-one products, Toda brackets and Whitehead products are considered.
متن کاملm at h . A T ] 4 M ar 1 99 8 SYMMETRIC SPECTRA
Introduction 2 1. Symmetric spectra 5 1.1. Simplicial sets 5 1.2. Symmetric spectra 6 1.3. Simplicial structure on Sp 8 1.4. Symmetric Ω-spectra 10 2. The smash product of symmetric spectra 11 2.1. Symmetric sequences 11 2.2. Symmetric spectra 14 2.3. The ordinary category of spectra 18 3. Stable homotopy theory of symmetric spectra 19 3.1. Stable equivalence 20 3.2. Model categories 26 3.3. Le...
متن کامل